2011年7月27日 星期三

The Sympathetic Nervous System Induces a Metastatic Switch in Primary Breast Cancer

Erica K. Sloan, Saul J. Priceman, Benjamin F. Cox, Stephanie Yu, Matthew A. Pimentel, Veera Tangkanangnukul, Jesusa M.G. Arevalo, Kouki Morizone, Breanne D.W. Karanikolas, Lily Wu, Anil K. Sood, and Steven W. Cole

Abstract

Metastasis to distant tissues is the chief driver of breast caner-related mortality, but little is known about the systemic physiologic dynamics that regulate this process. To investigate the role of neuroendocrine activation in cancer progression, we used in vivo bioluminescence imaging to track the development of metastasis in an orthotopic mouse model of breast cancer. Stress-induced neuroendocrine activation had a negligible effect on growth of the promary tumor but induced a 30-fold increase in metastasis to distant tissues including the lymph nodes and lung. These effects were mediated by B-adrenergic signaling, which increased the infiltration of CD11b'F4/80' macrophages into primary tumor parenchyma and thereby induced a prometastic gene expression signature accompanied by indications of M2 macrophage differentiation. Pharmacologic activation of B-adrenergic signaling induced similar effects, and treatment of stressed animals with the B-antagonist propranolol reversed the stress-induced macrophage infiltration and inhibited tumor spread to distant tissues. The effects of stress on distant metastasis were also inhibited by in vivo macrophage suppression using the CSF-1 receptor kinase inhibitor GW2580. These findings identify activation of the sympathetic nervous system as a novel neural regulator of breast cancer metastasis and suggest new strategies for antimetastic therapies the target the B-adrenergic induction of prometastatic gene expression in primary breast cancers.

檔案下載

沒有留言:

張貼留言